

**USDA** Animal and Plant Health Inspection Service U.S. DEPARTMENT OF AGRICULTURE



# **HPAI** Epidemiology **Update**

**Amy Delgado, Director** Center for Epidemiology and Animal Health May 31, 2023

# Avian Influenza Risk and Protective Factors

#### **Avian Influenza Risk Factors over Time**

|                                | 2015                      | 2016           | 2017                                 | 2018        | 2019        | 2020           | 2022                         |
|--------------------------------|---------------------------|----------------|--------------------------------------|-------------|-------------|----------------|------------------------------|
| Virus                          | H5N2 HPAI                 | H7N8 HPAI/LPAI | H7N9 HPAI/LPAI                       | H7N1 LPAI   | H5N2 LPAI   | H7N3 HPAI/LPAI | H5N1 HPAI                    |
| Production type(s) affected    | 7                         | 1              | 3                                    | 3           | 1           | 2              | 15                           |
| State(s) affected              | N=15: primarily IA,<br>MN | IN             | TN, AL, GA, KY                       | MO,TX       | MN          | NC, SC         | N=47,<br>widespread          |
| Study type                     | Case Control              | Case Control   | Case<br>Series/Expert<br>Elicitation | Case Series | Case Series | Case Control   | Case Series,<br>Case Control |
| Location in a Control Zone     |                           |                |                                      |             |             |                |                              |
| Rendering trucks near barns    |                           |                |                                      |             |             |                |                              |
| Garbage trucks near barns      |                           |                |                                      |             |             |                |                              |
| Dead bird disposal near barn   |                           |                |                                      |             |             |                |                              |
| Company service person visit   |                           |                |                                      |             |             |                |                              |
| Visitors do not change clothes |                           |                |                                      |             |             |                |                              |
| Shared vehicles/equipment      |                           |                |                                      |             |             |                |                              |
| Wild mammals around barns      |                           |                |                                      |             |             |                |                              |
| Mesopredators                  |                           |                |                                      |             |             |                |                              |
| Wild birds on farm             |                           |                |                                      |             |             | - 6            |                              |
| Water body within 350 yds      |                           |                |                                      |             |             |                |                              |
| Barn enclosure defects         |                           |                |                                      |             |             |                |                              |
| Hard surface entry not C&D     |                           |                |                                      |             |             |                |                              |
| Operation density              |                           |                |                                      |             |             |                |                              |
|                                |                           |                |                                      |             |             |                |                              |

## Table Egg Case-Control Study

40 participants in 8 states

- 18 cases (11 wild bird introduction, 7 lateral spread)
- 22 controls in same states as case farms

### Eligible control premises had:

- 50,000 or more birds
- Birds on-site for at least two-week window of risk

**Questionnaire**: farm characteristics, wild bird sightings, worker-, visitor-, and equipment-related practices, and egg handling, manure handling, and disposal practices

# What Risk Factors Best Explain the Odds of Becoming Infected?

| Variables                                                                                   | % Case farms | % Control farms | Odds ratio |
|---------------------------------------------------------------------------------------------|--------------|-----------------|------------|
| Farm in an existing control zone on the reference date                                      | 44.4         | 9.1             | 10.3       |
| Wild waterfowl or shorebirds in closest<br>crop field during the 14-day reference<br>period | 44.4         | 9.5             | 5.8        |
| No farm entrance gate                                                                       | 77.8         | 26.4            | 3.8        |
| No specific/dedicated barn personnel                                                        | >90          | 77.3            | 6.2        |
| Flock size ≥ 500,000 birds                                                                  | 61.1         | 50.0            | 2.6        |

#### **Top Risk Factors from Model Averaging**

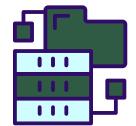
| Variables                                          | % Case farms | % Control farms | Odds Ratio |
|----------------------------------------------------|--------------|-----------------|------------|
| Control zone                                       | 44.4         | 9.1             | 10.3       |
| No farm entrance gate                              | 77.8         | 26.4            | 7.0        |
| Waterfowl presence                                 | 44.4         | 9.5             | 6.2        |
| Wild bird access to feed                           | 50.0         | 27.3            | 5.0        |
| Flock size ≥ 500,000 birds                         | 61.1         | 50.0            | 5.9        |
| Off-site disposal                                  | 50.0         | 27.3            | 4.1        |
| No specific/dedicated barn personnel               | >90          | 77.3            | 6.4        |
| At least some rodent problems                      | 72.2         | 45.5            | 3.1        |
| Change of clothing not always required for workers | 33.3         | 9.1             | 4.5        |
| Sharing trucks/trailers                            | 38.9         | 27.3            | 3.1        |
| Mowing less than 4 times a month                   | 64.7         | 40.9            | 2.8        |
| Lower level of vehicle washing*                    | 88.9         | 68.2            | 2.7        |

# What Risk Factors Best Explain the Odds of Becoming Infected with a Wild Bird Introduction Virus?

| Variables                                                                | Odds Ratio |
|--------------------------------------------------------------------------|------------|
| Waterfowl sighted in field closest to farm (10s to 1000s vs. none)       | 44.4       |
| Feed spills cleaned up immediately                                       | 0.06       |
| Wild bird access to feed (sometimes, most of the time, always vs. never) | 11.4       |

#### Ignoring Route of Introduction, did Ventilation Differ Between Cases and Controls?

| Variables                                             | % Case<br>farms | % Control<br>farms | No statistically<br>significant<br>differences |
|-------------------------------------------------------|-----------------|--------------------|------------------------------------------------|
| Barn has ventilation system updates                   | 11.8            | 26.3               | between cases<br>and controls.                 |
| Ventilation Features:                                 |                 |                    |                                                |
| <ul> <li>Curtain or tunnel<br/>ventilation</li> </ul> | 11.1            | 18.2               |                                                |
| <ul> <li>Side wall inlet</li> </ul>                   | 27.8            | 40.9               |                                                |
| <ul> <li>Ceiling or eaves<br/>inlet</li> </ul>        | 61.1            | 40.9               |                                                |


#### For Wild Bird Virus Introductions, Did Ventilation/ Wind Breaks Differ Between Cases and Controls?

| Characteristic                                     | % Case farms | % Control farms |
|----------------------------------------------------|--------------|-----------------|
| Barn has ventilation system updates                | 9.1          | 17.7            |
| Ventilation Features:                              |              |                 |
| <ul> <li>Curtain or tunnel ventilation</li> </ul>  | 18.2         | 15.0            |
| Side wall inlet                                    | 36.4         | 45.0            |
| <ul> <li>Ceiling or eaves inlet</li> </ul>         | 45.5         | 40.0            |
| Structural windbreak on farm (hill, natural break) | 0.0          | 30.0            |

#### **Table Egg Case-Control Study Limitations**



Response/ recall bias



Small datasets limit power to detect associations



Analysis only possible when sufficient variation in responses is reported



With 18 case farms in the dataset, only 2 to 3 variables advisable for multivariable modeling – doesn't mean other variables aren't important



## **Turkey Case-Control Study**

#### 125 participants in 12 states

66 case farms and 59 control farms across
 12 states

### Eligible control premises had:

- Commercial turkey farms that raised meat turkeys
- Farms with birds on-site for at least two-week window of risk

**Questionnaire**: farm characteristics, wild birds and wildlife, biosecurity, personnel, visitors, vehicles and equipment, and management practices



# What Risk Factors Best Explain the Odds of Becoming Infected?

| Characteristic                                                       | % Case farms | % Control farms | Odds ratio |
|----------------------------------------------------------------------|--------------|-----------------|------------|
| In an existing control zone                                          | 57.6         | 23.7            | 7.24*      |
| Both brooder and grower stages on farm                               | 51.5         | 27.1            | 9.17*      |
| Sex: toms                                                            | 86.4         | 67.8            | 7.50*      |
| Waterfowl/shorebirds seen in closest field                           | 30.3         | 11.9            | 8.11*      |
| Worker biosecurity includes shower before entering barn <sup>A</sup> | 10.6         | 27.1            | 0.26*      |
| Restroom facility available to crews visiting farm                   | 45.5         | 69.5            | 0.39*      |
| Render dead birds                                                    | 30.3         | 13.6            | 9.06*      |



#### How Challenging are the Following Issues?

Not at all challenging

Somewhat challenging Quite challenging


Extremely challenging

Hiring personnel Retaining trained personnel

Communicating the importance of biosecurity to personnel

Enforcing daily biosecurity measures

Keeping shared vehicles cleaned and disinfected





### What Investments Paid off?

#### Turkey producers who invested in the following reduced their likelihood of contracting HPAI in 2022:





Permanent barn ventilation improvements or renovations

Temporary wild bird mitigation structures or infrastructure



Permanent vehicle wash stations improvements or renovations



Permanent wash stations for employees in older barns







### How Did Investments Differ among Turkey Producers?



#### **Control farms spend more**

(\$27,657 vs. \$21,159) on temporary measures. Examples: gates, parking areas, temporary wild bird migration, temporary air intake inlet covers, or temporary vehicle wash stations.




NPIP participation **increased likelihood of investing in temporary biosecurity measures by 26.9%.** 







### HPAI Turkey Case Control Study: Preliminary Economic Results



Dual sex farms were **0.2% more likely** to spend more each month on biosecurity costs than single sex farms.

Case farms were **87.7% more likely** to have plans to make permanent changes to biosecurity.



Farms that had permanently invested in improvements or renovations in the last year less likely to plan for future permanent investments.







#### Did Ventilation Vary Between Cases and Controls?

| Ventilation Features          | % Case<br>farms | % Control<br>farms | No statistically significant                  |
|-------------------------------|-----------------|--------------------|-----------------------------------------------|
| Curtain                       | 60.4            | 55.0               | differences<br>between cases<br>and controls. |
| Environmental/<br>tunnel      | 33.3            | 35.0               |                                               |
| Side doors (such as tip outs) | 6.3             | 10.0               |                                               |

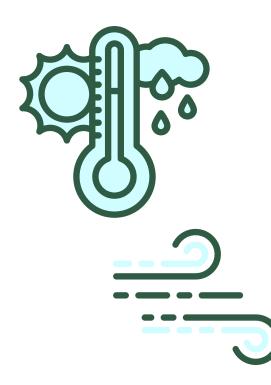


#### Did Ventilation Improvement Investments Matter?

Invested in permanent improvements to barn ventilation since 2015

82% Less Likely to Become Positive for HPAI As barns get older (>13 years) we may not see the same protective effect

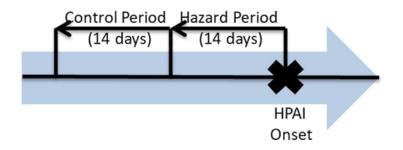
Could be related to building materials, design, other issues, etc. from the time in which it was built.




#### Did the Use of Windbreaks Vary Between Cases and Controls?

| Variables                                 | % Case farms | % Control farms | No statistically significant                  |
|-------------------------------------------|--------------|-----------------|-----------------------------------------------|
| Any windbreak<br>present                  | 40.0         | 27.6            | differences<br>between cases<br>and controls. |
| Evergreen or juniper<br>windbreak present | 18.5         | 10.3            | and controls.                                 |
| Deciduous tree<br>windbreak present       | 25.0         | 17.2            |                                               |
| Structural windbreak present              | 13.9         | 15.5            |                                               |

### **Does Weather Affect HPAI Risk?**


#### Weather Variables Considered



- Daily maximum temperature
- Daily minimum temperature
- Daily precipitation
- Daily maximum relative humidity
- Daily minimum relative humidity
- Daily average wind velocity
- Daily specific humidity
- Downward shortwave radiation

# Methods

- Case-crossover study design
- Commercial turkey<sup>1</sup> and layer<sup>2</sup> farms
- Each HPAI-affected farm serves as its own control
- Compare weather during hazard and control period





<sup>1</sup> Includes turkey breeder and turkey meat production farms <sup>2</sup> Includes layer breeder, pullet, and table egg layer farms

## **Preliminary Univariate Analysis**

| Commercial Turkey Farms (n=218) |         |            |  |  |
|---------------------------------|---------|------------|--|--|
| Variable<br>(14-day average)    | P-Value | Odds Ratio |  |  |
| Precipitation (mm)              | 0.004   | 1.28       |  |  |
| Minimum<br>temperature (°C)     | 0.006   | 1.08       |  |  |
| Average wind speed (m/s)        | <0.001  | 4.25       |  |  |



| Variable         | P-Value | Odds  |
|------------------|---------|-------|
| (14-day average) | P-value | Ratio |
| Precipitation    | 0.038   | 1.52  |
| (mm)             |         |       |

\*Maximum temperature has a p-value of 0.09 and might be important in the multivariate model



Weather variables often have complex interactions, so multivariable modeling is needed before drawing final conclusions.

## Acknowledgements

#### Map Creation:

- Christopher Kizer, Geospatial Analysis, Products, & Services
- BirdCast (Cornell University, Colorado State University & University of Massachusetts Amherst)

#### Virus Phylogenetics and Source of Virus:

- Jared Luxton, Philip Riggs & Carolann Knutson Center for Informatics
- Mia Torchetti, Kris Lantz, Jess Hicks, Cameron Norris, Todd Stuber National Veterinary Services Laboratories

#### **Case Control Study Work:**

- Jada Thompson, University of Arkansas
- Producers
- State Partners
- Turkey Federations and Associations
- National Agricultural Statistics Service
- National Veterinary Services Laboratories
- APHIS VS Field Operations
- Center for Epidemiology and Animal Health Staff

# **Questions?**